Sustainable means able to be sustained, and the alternative, then, is things that are unable to be sustained.

What part of unable to continue suggests we continue right down the same path? It is like my whole culture is gaslighting me because I feel so crazy.

Putting a finer point on it, I have long been a critic of vertical farms, most recently in Vertical farms: the greatest hope for cities, or a band-aid on a sucking chest wound? 

Salon also posted Enough with the vertical farming fantasies: There are still too many unanswered questions about the trendy practice.

But over at TreeHugger today, the tireless Lloyd Alter gives vertical farms a little love after nearly a decade of criticism, with I was wrong about vertical farms; Aerofarms shows how to make them really work.


Aerofarms has apparently avoided many of the things Lloyd has criticized in the past: the farm is in an abandoned factory, the growing racks are stacked very high to get more square footage, the plants are grown hydroponically in a fabric medium so consumption of nutrients and water can be tightly controlled to eliminate waste, and LED lighting is used that can be tuned to the specific colours the plants need for optimal photosynthesis, thus reducing energy use.

Aerofarms is a classic Less Bad is not Necessarily Good solution, in which efficiency serves to distract from the finitude of our planet.

Falling from 500 feet may be “less bad” than falling from 1000 feet, but you are still dead momentarily after impact. 

Today, we spend 10 calories of fossil fuel energy to produce one calorie of food. Efficiency might allow you to use eight calories of energy to produce one calorie of food, but you are still losing net energy at a shocking rate. It is Not Good.

Before fossil-fueled farming, it was easy to see which farmers used more energy than they produced—they were the dead ones. With only their own or their animals’ muscles to power a farm, the chain of cause and effect was very direct.

In Salon, Stan Cox calculates:

producing America’s annual vegetable crop (not counting potatoes) in vertical systems under lights would require well over half of the electricity this country generates every year, and that would crank out 1.3 billion metric tons of carbon emissions per year.

Half of the electricity?! Hey, let’s be generous and assume they can double efficiency! Then it will only take ONE-QUARTER of all the energy used in the United States. And that is before we “succeed” in electrifying transportation and heating and cooling, thus radically increasing demand for electricity.

Which quarter of your energy use are you going to give up? Oh, you don’t want to give anything up? All right, I guess we need to increase capacity by 25%…

So, just a quick check-in on the facts:

  • The US energy mix is 90% non-renewable, while globally, energy used is 80% non-renewable. Replacing that energy with renewables is going to be a significant challenge—a challenge many analysts characterize as impossible.
  • Various IPCC reports and international accords agree Greenhouse Gases need to be cut sharply and very soon. 80% reductions by 2050 is one common target.
  • Even still, these 80% reductions are widely seen as inadequate to avoid catastrophic climate change.
  • James Hansen predicts a sea level rise of several meters in the next 50-150 years. His position is controversial, but he has a history of conservative conclusions.

Given these facts, let me sketch some vertical farm scenarios regarding the electricity used to power the lights, pumps and filters, and whatever CO2 producing devices they are enriching the atmosphere with:

Dark Green Reality
In this scenario, let’s assume we look at whole systems and determine the most important response to climate change is to radically slash material and energy use. Energy is allocated with great care to only the most important tasks, like the digital archiving of certain very valuable research texts, powering infant incubators, and very small amounts of pumping and other services.

Since sunlight falls on fields for free, it is immediately obvious that generating electricity to power lightbulbs to grow salad is a fool’s choice. Humans choose a more local and seasonal life, following and obeying the rhythms of nature. Birds chirp in every tree.

Bright Green Utopia
The electrification of the ‘developed’ world accelerates, with champagne corks popped for every new Tesla model. The developing world follows, with electric cars, air conditioners, televisions, light bulbs and computers reaching billions more people then ever before.

To power all this requires damming every trickle of water on the planet, while resource extraction and manufacturing for solar panels and windmills still need huge amounts of fossil fuels. Coal plants stay online to cope with differences between demand and renewable supply (caused whenever the sun goes down), and there is a huge surge in (non-renewable) nuclear power development. The downwind pollution from nuclear reactors and fuel mining continues to cause cancers and birth abnormalities, and the spent fuel continues to have no place to be safely stored for the lifetime of the danger. It takes a century, but Aerofarms factory is washed away by rising sea levels.

Hell in a Handbasket
Increasing climate chaos activates human lizard brains at a mass scale, causing people to double down in a hedonistic fuck-it—a sort of perpetual Black Friday riot. All of this consumption requires massive amounts of electricity, so coal plants are spun up to maximum and construction starts on dozens of nuclear plants, as well as fuel mining and processing plants.

Global average temperature soars, ice caps suffer catastrophic melt raising sea levels dozens of feet within decades, not centuries. One billion people are displaced and massive urban areas including New York City and Mumbai are inundated. Aerofarms original location is washed away.

Business as Usual
On our current trajectory, BAU is not wildly different from the Hell in a Handbasket scenario.

black and white threshold edited

There is no way to make vertical farms good. Neither our current model of transporting food great distances nor vertical farms are good responses to overpopulation and urban concentration. Maybe they are less bad. Maybe.

The public discourse, politicians, academics, journalists, scientists, most seem to be blithely washed along in the flood of business-as-usual. The plan—the actual policy—seems to be hoping a knight in shining armour will ride in to save us. This is enormously frustrating for me.

“Would you like to get kicked in both knees, or just one knee?”

“Erm…. I would like to not be kicked at all…”

We are talking about systems that rely on non-renewable resources, and are therefore impossible to sustain. The immutable forces here are the laws of nature. If our agriculture is not sustainable, that means it will not be sustained. That means it will end. That means people cannot eat it.

Less Bad is slow death.

But it is true, talking about what is Less Bad and what is Good obscures the reality of the situation a little.

The challenge is that while Less Bad is slow death, Good is increasingly looking like different death, at least in the short term. We show no sign of voluntarily realigning our society and our culture to follow the laws of nature. Rather, we continue to throw energy, materials and technology at problems. This makes a reckoning inevitable, and it is hard to see how an involuntary reduction in population can be avoided. It sure looks like truly sustainable agricultural practices that could feed humanity will only be widely adopted when we have exhausted all of our Less Bad options.

Now, slowing bleeding is always a good idea, but we are way past the cut and scrape stage. When medics perform triage after a catastrophe, they leave some people bleeding because they have no hope of survival and the bandages and personnel are needed for people who might live.

So, should we focus time and attention on infrastructure that, as these rough scenarios show, cannot endure? Personally, I try to work for things that are Good.

Which is not vertical farming.




I sometimes find myself making negative comments about vertical farming. This happened again today, and the facebook friend to whom I responded replied very openly with, “Well, what then? Green belts?”

So rather than continue my terse and impatient crypticism on social media, I will try to respond comprehensively. My analysis, as with all analyses, rests on a few assumptions:

Our planet is finite, and receives no new inputs important to human timeframes, except for sunshine.

Since the planet is finite, everything on it is also bounded. Nothing can grow forever, and nothing can be extracted forever.

Please note that I said extracted, which is different than harvested. We extract nonrenewable resources, like oil, coal, copper and iron. We harvest renewable resources, like apples, wheat, chickens and salmon.

We can harvest extractively. So, if we catch too many salmon, the salmon cannot renew. This causes depletion, extirpation and extinction. But if we harvest less than can be renewed, that harvest is sustainable.

For all that people like to justify their behaviour by throwing their hands in the air and saying, “But what does sustainable even mean anyway?” it has a very simple meaning. It means, able-to-be-sustained. That means essentially forever, which to humans is probably 1000 or 10,000 or 100,000 years. Whatever.

That nothing can be extracted forever is basic math. Even if our planet was made of solid gold, we could only extract a maximum of one planet’s worth of gold from it.

But nothing is solid, gold, or anything else. Everything is mixed up with other things: coal is mixed with rock, fish are mixed with ocean.

Being practical, we like to start with extracting the richest, most concentrated deposits of a resource, whether that is coal, copper or whales.

We start with the easiest, and then we make some specialized tools which help us really increase productivity—so then we roar through the easy stuff, and start working on harder stuff and that slows us down a little. And then we slow down a lot. This is Peaking; the most famous example is Peak Oil. This is not a theory, it is math.

The shorthand for this in our daily life is the 80/20 rule. 80% of the work gets done with 20% of the effort—and the last 20% of the work takes 80% of the effort. That is nice, but it really is probably more like the first 40% takes 10% of the effort and the last 60% takes 90% of the effort—except the last one or five or ten percent is actually just impossible for us to extract no matter what we try.

So, if we have a field of potatoes and the desire for a plate of french fries, we can easily dig a few spuds by hand and we don’t care if we miss a few. But if want to maximize our profits by harvesting as many of our potatoes as possible, the 80/20 rule begins to bite. It seldom makes sense to pay humans to harvest 100% of the tubers; the payback on finding the last few—or the last many—is just not worth the labour costs.

Faced with the high cost of labour it seems to make sense to build a potato harvesting robot. An automated—or lightly supervised—machine can outowork humans, and never asks for holidays or a raise. So that is great. We harvest more spuds and waste less food. We “spare” humans the toil of harvesting.

But at what cost?

The machine runs on oil, a non-renewable resource. It is made of steel, and aluminum, and copper, and fabulously rare minerals, all non-renewable. Furthermore, all of those materials were extracted with machines that run on oil, were refined in coal furnaces, and manufactured with more oil or coal.

And all the extraction, refining and manufacturing machines were made of materials extracted with oil, refined with coal, and manufactured with coal or oil. It is like a terribly polluting—and unsustainable—M.C. Escher drawing.

If something is unsustainable, well that means it is unable to be sustained. All we have left to discuss is the date of the funeral. To be fair, the funeral may be years, decades, or centuries in the future—but if you see a black suit or dress on sale, you might want to snap it up…because if you use non-renewables at any rate, they will eventually effectively disappear.

Lastly, I want to mention the principle of bankruptcy. If you spend more than you make, you go out of business. If a coyote spends more calories chasing rabbits than it earns when it catches rabbits, it starves to death. If a plant transpires more water through its leaves than it collects through its roots it wilts, and can die.

And if it takes more energy to drill for oil than you get out of the oil, you stop drilling.

The Beverly Hillbillies could spend one barrel of oil energy and extract 100 barrels of oil for sale—this is the magic of fossil fuels, they are fantastically concentrated. One gallon of gas contains the energy of something like two weeks of human labour.

But of course we burned through that pretty fast, and more recent drilling is closer to a 30:1 ratio. The oilsands are as low as 3:1—that one barrel of energy nets only two more.

Some biofuels may even be negative, they use more energy than is extracted. They exist, like industrial potatoes, thanks only to a massive, historical and onging subsidy of oil energy. Without the built industrial infrastructure and overseas resource wars, they would wither away.

And the same goes for our green darlings, solar, wind, tidal, et c. They are all harvested with machines of non-renewable materials mined, refined and manufactured with oil and coal. They are not able to be sustained.

So maybe I can talk about vertical farms now.

The notion is that dense cities can grow some of their food and cut down food-miles, the impact of transporting foodstuffs from field to plate. Secondly, by growing up perhaps we can avoid growing out, and thereby leave more land for other creatures. And thirdly, by hermetically sealing out insects, the use of pesticides can be hopefully eliminated.

Well, local eater though I am, I know food miles are not the greatest impact of food, by far. About 4% of the impact of your food lies in transporting it to your plate.

And what does the remaking of a farm on the vertical plane cost?

Farming benefits from rain for the plant, and the blessed sunshine, and the sweet soils, full of worms and bugs and bacteria and fungi, all of which add fertility.

Vertical farms build a concrete box to keep all that away, and so they must replace it all with lights and pumps and synthesized chemicals. Mined, refined and manufactured. And then after the manufacturing, the lights and pumps must be operated with power generated from coal, gas, hydro and nuclear. And those power plants are mined, refined and manufactured…

So everything that nature gives for free, a vertical farm excludes and replaces with an expensive, non-renewable, unable-to-be-sustained system that relies on subsidies from resources kept affordable thanks to foreign wars. In no way do they produce as much energy as they consume. And so, ultimately, they are destined for starvation.

Now, there are a few things that consume more than they produce which we continue to subsidize—babies spring to mind—so maybe we could choose to subsidize vertical farms because we like fresh lettuce, and want space for wildlife.

Maybe, But they do run on non-renewable materials and energy, and nobody who knows anything about manufacturing thinks that is going to change anytime soon, or that it is necessarily possible at all. I don’t find the idea of long-term energy subsidies for vertical farms to be very credible.

The use of non-renewables is not-able-to-be-sustained. And the use of renewables to grow food is, well, farming. As in fields. With sun and rain.

Well, what then? Well, this is not a problem that can be fixed, it is a predicament to be carried.

The question itself contains the perspective of Empire. Everything must bend to us, everything must work out for us, our way of life is not negotiable. We have upwards of seven billion souls on this planet, and they all want iPhones, therefore we need vertical farms.

History shows that empires cannot escape the math of bankruptcy, and so far they have all fallen. The only way out of this without confronting our desires to continue our highly subsidized life of ease and privilege is to seek a Higher Power—a miracle is needed.

For the rationalist problem solvers among us, that higher power is usually science and technology.

For example, if somebody develops a nuclear reactor that can run on pocket lint, we will be essentially liberated from constraints on our energy use. Realistically, that does nothing about the many other non-renewables except increase the length of time we can scratch around in the dust for crumbs. But most-importantly, it is a hell of a way to plan for the future. We are literally saying, “We don’t want to deal with reality, so we are going to continue doing whatever we want, and trust an angel will bring us a miracle.”

This church points to past innovations as proof we will science our way out of this jam. This ignores history. Various forms of fossil fuels, for example, have been known for millennia—they just weren’t seen to be useful. Many centuries later, given a huge untapped resource, well-known and lying around in plain sight, we did develop the massive burning of oil products that finally docked the whaling fleet.

Now, if they hadn’t developed petroleum products, we would have stopped using whale oil anyway for the simple lack of whales. That is the math. Whales were in steep decline before the first oil well was drilled.

But what we don’t have today is a massive store of concentrated energy, lying around in plain sight. We do have several kinds of very diffuse energy: nuclear, solar, wind, etc. Because of the energy, materials and infrastructure required to concentrate that diffuse energy, these have a much lower Energy Return on the Energy Invested than a nice barrel of oil.

This means there is less surplus. If your investment returns 7% instead of 5%, you have more surplus and you can do more things. If you have less surplus, you can do fewer things. So, in a world of diminishing returns on our energy investments, in a world in which we have and will continue to have less energy to spend, why would we build a box to keep nature’s free services away from our plants, only to replace those very things with energy-hungry lights and machines?

This is not able-to-be-sustained. And so it will not be sustained. That is the math.

Now, in the short term, we may get caught up in the Green Fever, and slap vertical farms in some parkades and vacant lots. It is a short-sighted sort of math, but it is good-hearted.

For myself, I am interested in longer-term thinking. I am not interested in advocating for systems like vertical farms, which will consume enormous amounts of concrete, steel, copper and plastic, and will eventually go out of business. Why would we sink precious resources into a system that cannot be sustained?

There is real, important and durable work, sustainable work, that needs to be done. If we want to increase the food grown in cities, start replacing decorative street trees with fruit and nut trees. Advocate for systems that manage our food scraps with chickens instead of with diesel trucks and loaders. Support your peri-urban farmers for your tender greens, and ask your grocer to contract with local farmers. Start thinking about what is able to be sustained. Think about what we can have, not what we want to have.

About a century ago, New York City received most of its food from within seven miles. So yes, cities need green belts. This is a durable model that has worked for humanity over the long term. Most importantly, traditional intensive farms can produce more food than they require to operate. They can be sustainable.

Ours is far from the first civilization to face the fact that our systems cannot grow forever—nothing can. Vertical farms are the answer to the wrong question. The question is not how many technologies we can deploy to resist change, no matter what cost to ourselves and the ecosphere. The question how do we live joyfully within our fair share of this planet.

***EDIT*** This just in from Salon. There are some actual studies with actual numbers in this article. Conclusion? Vertical “farming” is a giant energy loser.


sauerkrautMaking ‘kraut is incredibly easy to do, and you will be richly rewarded for your few minutes of work. If you have never made sauerkraut before, feel free to skip down to the instructions. This super easy method requires almost no equipment, and eliminates the need for anything expensive like fancy crocks or airlock lids. In fact, you can find the inexpensive jars you need at hardware stores, kitchen shops and thrift stores.

But if you have made sauerkraut before, you—like me—have probably been doing it wrong. I am going to tell you of my journey on the sauerkraut road, complete with all the links you need to truly suck the oxygen out of a dinner party.  Or, you can just trust me and skip to the instructions too. Really, there are 2,500 words between you and the instructions, so feel free to skip. You can always come back later when you want to geek out.

black and white threshold edited

I was not raised with sauerkraut, but I was raised with my mother’s admiration for strong Eastern European women who came to the Okanagan via the prairies. My mother swears that out of the few things these women could bring from the Old Country, they packed their sauerkraut stones. These were stones that were smooth and flattish and round—sized just to fit in a crock to hold the vegetables under the brine.

When I am learning new skills I like to think about how to use less energy, so a big crock of sauerkraut that preserves fall vegetables without boiling water canning or freezing is very attractive. But, not being raised with sauerkraut means I don’t easily incorporate it into my diet. I don’t eat it straight from the jar. Though it is delicious, I seldom make sauerkraut soup.

And so I have always ended up with a lot of ‘kraut that is getting less appetizing—soft and funky smelling. I have canned sauerkraut, but that kills the living probiotics that so many people need.  Indeed, trying to get some probiotic-rich food into Carmen’s digestive tract was part of the motivation to make ‘kraut in the first place.

Making ‘kraut in a crock is also a big hassle, unlike the method I am going to share with you. With a crock, you must keep up with a daily schedule of skimming scum and occasional bits of floating cabbage of the top of your brine. If you go away for a couple of days you can easily return to a thick mat of blue mould, which despite what Sandor Katz says, I find discomfiting.

Fermenting in a crock adds to the burdens of the Small and Delicious Life. I often feel like I have a thousand tiny tasks—jobs that only need a little time, but at the right time—feeding the rabbits, watering the garden, feeding the sourdough starter, skimming the sauerkraut, doing one of the many steps of making a loaf of bread, shepherding some step of cider or beer fermentation, turning the wheels of Brie that are moulding in the cellar. All these little tasks can leave me feeling kind of panicked that I might forget something important.

So finding a new technique that totally eliminates a small, daily task is pretty freaking fantastic. In fact, I honestly think this method is truly transformative. It may not be the Gutenberg printing press, but it is right up there—but I am not quite ready to give you the instructions just yet. First I am going to tell you about an internet wormhole I fell down.

When I say internet wormhole, I usually picture the sort of 1980s computer graphics used to represent black holes—a sort of funnel through the space/time continuum. This wormhole was not at all like that. The sauerkraut wormhole was much more like a hole made by earthworms, sort of damp, dark, twisty, and narrow. And long. I think I crawled through that hole for well over a year, trying to grasp what was being revealed to me.

The first clue was this page on Open and Closed Ferments. This article has everything I love in my gurus: a bit of a mind-boggle, a no-bullshit tone, an attempt to present the full picture, and an honest wish for success regardless of whether you buy their product.

But I got stuck on this article for quite a while. I had no idea there were open or closed ferments. When I first read this I don’t think I had ever made alcohol. I certainly had not looked up the definition of fermentation.

Fermentation in food processing is the conversion of carbohydrates to alcohols and carbon dioxide or organic acids using yeasts, bacteria, or a combination thereof, under anaerobic conditions. Fermentation usually implies that the action of microorganisms is desirable. The science of fermentation is also known as zymology or zymurgy.

So fermentation converts sugars to acid or alcohol and gas under anaerobic conditions. There are many strains of bacteria and yeast that create different combinations of acid, alcohol or gas under different conditions, which is how we get the large variety of fermented food and drink.

  • Fermentation converts the carbs in wheat to acid and gas, which gives you the sour in sourdough and the bubbles that leaven the bread. Predigesting the carbs is why many gluten-sensitive people can eat sourdough.
  • Fermentation makes the alcohol and bubbles in our beer and cider. Both beer and cider are flat, not fizzy, after fermentation. Just like wine all the gas escaped through the airlock of the fermenter. To get the bubbles in beer, cider and champagne, a small amount of sugar is added before the bottle is sealed. The yeast eats that sugar and produces a small amount more alcohol and the gas that is now trapped in our carbonated drink.
  • Fermentation makes the acid that turns milk into yogourt.
  • Fermentation helps keep cured sausages safe to eat. When you make salami, you add a bacterial culture and a bit of sugar. The bacteria eat the sugar and produce acid, which drops the pH of the meat below the level needed for pathogenic bacteria to reproduce. So, it is creepy to make cured salami because you have links of raw meat hanging in your kitchen at room temperature for several days, but that creates the acid needed to keep the meat safe over its long curing time.
  • And fermentation makes our pickled cabbage and other vegetables safe to eat. The bacteria present on the foods digest the sugars stored as carbohydrates in the cabbage and convert it to acid and gas. This is the vinegar tang of pickled foods.

So, understanding that would have made my wormhole a lot shorter. It is still interesting to see the definition says fermentation happens under anaerobic conditions—without oxygen. How does that fit with “Open fermenting (where the surface of the fermenting liquid is exposed to the air) is the traditional means of fermenting kraut, pickles, wild yeast, and many other pickled or cured items.”

Well, the traditional method may not be the “best” method, if by best you mean consistent or safe, to reduce food waste and maximize storage. It may be the best method if by best you mean interesting flavours, such as are created in sour beers that are fermented in systems that deliberately maximize the amount of wild yeasts that get blown into the the open vat.

For me, I am interested in consistent and safe. I don’t want to waste hard-grown food, and I don’t want to make my family sick. And, it is a real bonus to reduce the workload.

The next turn in the wormhole was The Science Behind Sauerkraut Fermentation, on Lea Harris’ Nourishing Treasures site. That website is far longer and more informative than this Gilgamesh I am writing, but I still couldn’t quite wrap my brain around what it was telling me. If you have gotten this far, you might enjoy reading it, too.

Fortunately, somewhere in this wormhole I accumulated enough experience making fermented foods that I started to grasp the theory, even without knowing the definition of fermentation. But as is often the way, it wasn’t accumulated knowledge that changed behaviour. It was that I was dissatisfied with the big crock of mouldering old ‘kraut, and with canning ‘kraut and killing its probiotics. I finally had the brain flash that I could eat local food all year ‘round, preserve using no energy, and make small enough batches of ‘kraut that none would go to waste.

I just went to my farmer’s market and bought six cabbages, five of which I put in the root cellar. The sixth I made into ‘kraut, using the method I am going to teach you. A month later, I did another cabbage, and so on. Cabbage keeps very well, and this method worked out just swimmingly.

Did you miss that? I think it is earth-shaking. Unless your family eats great volumes of sauerkraut, stop making big crocks of it. You can store the cabbage in your cellar and always have fresh ‘kraut ready for you.

So, I had my conversion experience but had not yet experienced the miracles. I did not trust Lea, despite her extensive and literally microscopic experiment with different fermentation containers.

So, first I did the lowest-rent version, a mason jar ferment. I made ‘kraut as per usual, and crammed it into a jar, with some sort of weight on top. Every day or so I would slowly loosen the jar ring and vent a little gas out so the jar did not explode.

That worked just fine. Venting the jar was easier than skimming scum, and the ‘kraut was good. But venting the jar was still a thing I had to remember to do, and the consequences of forgetting could be very messy.

Next I drilled a hole in the lid of a mason jar and stuck an airlock from our cider-making into it. Also good ‘kraut, though the airlock is tall, and my homemade lid was sub-par. This is basically what many of the commercial sauerkraut airlock systems are—just a two dollar airlock in a hole drilled in the lid of a jar.

Then I happened to find a thin sheet of silicone rubber at the Japanese Dollar Store; I think it was intended to be a baking mat. I cut a silicone disc slightly smaller than the jar ring, and punched a small hole in the centre of my jar lid with a nail. Then I stuffed the jar full of salted cabbage, weighted it down, screwed the lid and ring on, and simply set my silicone disc on top. Again, great ‘kraut.

Parallel to these various experiments were experiments in weighting the ‘kraut. In my crock I used a glass disc—a microwave turntable platter I found at the thrift shop. In the jars I settled on a leaf of cabbage to hold the shredded ‘kraut down, itself held down by a jam jar, or a half-size jam jar, that was pushed down by the lid of the jar.

I also thought I may have invented a new thing—I tried a ziploc baggie of glass marbles.  You can stuff them into any size or shape of jar. But, I try to avoid plastic near my food, and I could never figure out how to make this awesome. Still, a handful of large marbles, what we called Cobs when I was a kid, might work.

These weights and airlocks were a lot of fiddling. And all this time the solution had been on Lea’s page. So here it is. Here is the secret.

Ferment in Fido Jar.

That is all, you are done, no fiddling. The internet hive mind says you should stick with European quality when you buy jars, no cheap mass-market crap. Even at Euro pricing, a two-litre Fido jar is only ten dollars at my local hardware store, and I regularly see Le Parfait jars in the thrift shop for a couple of bucks. The gasket seal allows gas to vent before the jar breaks.

Furthermore, Lea theorizes the gasket makes life easy in other ways. An airlock keeps the jar at atmospheric pressure. When the pressure inside the jar is greater than the pressure of the atmosphere, it bubbles out and everything is equalized. However, the Fido jar is a little pressurized, which assures oxygen stays out of the jar—really preserving the anaerobic environment.

This means you don’t even need a weight for your ‘kraut—it doesn’t matter if cabbage floats or sticks up out of the brine. Could it get any easier? When using the last of my root-cellared cabbage, which has lost moisture over the winter, I have added brine to make sure there was enough liquid, but even that may have been unnecessary.


sauerkraut scales

Lea’s article on the science behind sauerkraut brings out a very important point: Sauerkraut is fermented by a succession of bacteria. There are three main bacteria that thrive in different conditions over the course of the fermentation. Off the top of my head, those conditions would be acidity, salt concentration, and temperature.

The acid we want to pickle our vegetables is a waste product for the bacteria, they eat the sugars in the vegetables and produce lactic acid and carbon dioxide as waste. The first generation of bacteria barely acidify the brine before they are poisoned by their own wastes. The second generation takes over and does the bulk of the acidifying before they too are poisoned by increasing acidity. The third generation finishes the job up by bringing the sauerkraut up to a safe level of about 2.5% acidity.

Accuracy matters because the salt concentration is an important part of making sauerkraut. Too little salt and you may allow spoilage bacteria to proliferate, too much salt and you won’t allow the sauerkraut bacteria to proliferate. If you don’t mix the salt in thoroughly, you can get pink yeast, which while it won’t hurt you, is considered a flaw. Do not used iodized salt, as it can make your brine cloudy. Use pure canning salt or kosher salt.

I am always weighing small amounts of things—hops, priming sugar, pink salt—so I bought a digital scale that is allegedly accurate to one-tenth of a gram. I say allegedly because how would I know? Even the global standard kilogram, which is kept in a triple vacuum, is losing weight.

Plus, this scale only costs seven dollars on eBay. To make myself feel better, I also bought a calibration weight on eBay. Using a scale is important because the grain size and grain shape of salt can really change how much a teaspoon of each brand of salt weighs. So, spend ten bucks and get a scale and weight.

But, for you Canadians who want to use a measuring spoon, one level teaspoon of Windsor Coarse Salt for Canning and Pickling weighs 5.5 grams. One level teaspoon of Diamond Crystal Pure and Natural Kosher Salt weighs 3.1 grams. The difference in weight between those two teaspoons of salt is why you should buy a scale.

So here we go.

black and white threshold edited

How to make sauerkraut the easiest and cheapest way possible.

sauerkraut prep

I use the two litre Fido jar. This costs about ten dollars new.

I find that a medium cabbage, about 7” in diameter, weighs about one kilogram and nicely fills a two litre jar.

Weigh your cabbage, on your kitchen scale or at the store when you buy it.

Now weigh out 2.5% of the cabbage weight in salt. So, if your cabbage is one kilogram, you need 25 grams of salt.

Cut the cabbage in half, then into quarters. Please be very careful about this. The worst knife injury I have ever seen was a chef slicing a giant block of cheese. His hand slid down the back of the knife and over the point of the blade, cutting him very, very badly.

Cut the core out of each quarter. You can grate this and add it to the ‘kraut.

Slice one quarter of the cabbage into long ribbons. I use an OXO Mandoline I got on Craigslist for $20, set for ⅛” thick. Traditional cabbage slicers are big wooden affairs with huge blades. Different people like different thicknesses.

In a large bowl, sprinkle one quarter of your salt on the sliced quarter cabbage. Toss the cabbage and make some effort to get the salt evenly distributed in order to avoid the pink yeast. Massage the salted cabbage enthusiastically to begin bringing the juice out.

Stuff the salted cabbage in the Fido jar and tamp it down. I use a wooden stomper from my food mill. You could use a rolling pin, or a potato masher, or your fists. You want it to be very, very tightly packed. This helps all the cabbage get in the jar and starts releasing juices from cabbage.

A delicious option is to thinly slice one garlic clove and scatter it over the surface of the cabbage.

Repeat with the other three quarters—slice, toss with one-quarter of the salt, pack tightly in the jar and sprinkle with a clove of garlic or other spices.

This should take you twenty minutes or so. Then you just close the lid on the Fido jar and clean your knife.


Now, theoretically, you do not need to open the jar for the next six to eight weeks. However, over the next 24 hours I tamp the cabbage a few more times to help it release juices. If the brine has not covered the cabbage by the next day, mix a teaspoon of salt in a cup of water until dissolved and add enough to get an inch or so over your cabbage.

Put the jar in a cupboard in your kitchen so light does not degrade the nutrients. Do not put your ‘kraut in a cool place, the succession of bacteria need to be warm. In the first week the gas being generated from fermentation will vent out the Fido gasket and can bring some brine with it. I put my jar in a dish to catch any overflow.

Now wait for four to eight weeks. In our mild climate, we like about six weeks. Once you have opened your jar of delicious sauerkraut, store it in the refrigerator.


I am sure your first bites will thoroughly convert you to this easy and effective method. Go ahead and buy another jar or two, and check out the Fido Fermentation facebook page for more ideas. Remember, Fido jars hold more pressure than airlock fermenting systems, so steer clear of those unless you want to fiddle with weights to hold your vegetables under the brine. Masontops has a kickstarter up for a one-piece vented silicone lid for canning jars. They say, like Fido jars, the Pickle Pipe holds some pressure, so I will be watching this with great interest.

Kimchi anyone? Sauerruben?





the-garden-1024x682The first piece of swag to come out of writing this blog hit my mailbox this spring, when I was asked to review Jean-Martin Fortier’s book The Market Gardener. Sadly, they did not also send me a broadfork.

Carmen and I were also able to enjoy a one-day workshop with Jean-Martin, put on by the Young Agrarians as part of the Rockstar Farmer Tour—and we even drank a beer with him afterwards. So, I got the inside scoop for you.

In short, if you have dreams of serious gardening or small farming, buy this book. Beyond that, the big question for me was why would I buy this over the Coleman classic, The New Organic Grower? I think you should buy both, but I think you should read Jean-Martin first.

I will go into more detail, but Jean-Martin makes starting a profitable small farm (grossing over $100,000 from 1.5 acres) seem possible. I could identify with him in a way I can’t with the Grand Old Silverback Coleman; Jean-Martin and his wife Maude-Hélène are young; they didn’t start with a lot of money; they live in Quebec, which is noted for winter; they have chosen a farming system based on hand tools to avoid the expense of tractors.

To explain why I think you should have The Market Gardener near to hand, I need to talk about Eliot Coleman, the Guru of modern smallholdings. Fortier is an admirer and student of Coleman, the two of them have gone on speaking tours together—their philosophies are very complementary. Coleman is a researcher, an inventor and a philosopher. He tells you what he knows, what he thinks and what he doesn’t know. He does not skimp on detail—his books are thick and packed with information.

And for me, trying to garden a few urban plots and imagine a more agrarian future, Coleman is overwhelming. There is so much detail I drown. Coleman also uses a folksy illustration style I find obscures the information—this really stands out, for example, in his discussion of crop rotation.

IMG_0872-1024x768Jean-Martin has cut to the chase and tried to produce a handbook, a plan for the new small farmer to follow. He is more detailed about budgets and costs, and yet presents topics like crop rotation in a more simple way—a way I was able to apply in my own garden this year.

Fortier, like Coleman, is very aggressive about weeding out inefficiency—even if a little Coleman goes with it. The New Organic Gardener strongly promotes soil blocks. Fortier says, in his charming French way, that soil blocks are too much work, and they get perfectly good results with standard seedling cell trays.

Coleman is great—he is much more detailed on soil amendments. He also includes more history and philosophy. Coleman is a popularizer of winter gardening—whereas the Fortier family simply plans to take time off in the winter and go to sunny places.

It is comforting to me to have Jean-Martin demonstrate successful and profitable farming with different methods than Coleman. It makes me feel like any small variance on my path might not necessarily result in a disastrous garden failure. Fortier proves what Coleman advocates—observe, experiment, and do what works for you.

So I think you should buy both books, but I would buy Fortier’s first. Coleman’s The New Organic Gardener is excellent to read by your winter fire, when you have time for reflection, or feel you have incorporated enough you want to raise your game.

Jean-Martin Fortier’s The Market Gardener is the book to have at your hand, on the table while you eat lunch, on your bedside table for the few minutes before sleep. This is a direct, clear, guide for day-to-day operations of your small farm.



{ 1 comment }


Photo by mia!

Photo by mia!

One of my comfort foods is whole-wheat macaroni with vegetables. Since I am a lazy cook and reluctant dishwasher I have always just grated cheese and sprinkled it on top of the noodles then stirred it into a clumpy and unevenly distributed mess.

I have only made a cheese sauce twice before, and both times were after being roundly mocked by loved ones for my brutish standard of living.

But if there is one thing the Small and Delicious Life is about, it is enjoying the making of life as much as the consumption. So last night I made a cheese sauce. It was delightful and fun to make—truly 400% better than my bestial and unevenly melted grated cheese. Furthermore, there seem to be alchemical reactions between butter and milk and a shake of flour—this has all the makings of a lovely internet wormhole.

As is my modus operandi, I googled and opened a bunch of browser tabs on how to make a cheese sauce, and one of those posts caused me to lose my mind.

When will it stop? When will this whole bloated shit-show just implode from the weight of our idiocy? You see, when you buy pre-grated cheese, it is covered with anti-clumping and anti-fungal agents.

Of course it is. As anybody who has grated a nice cheddar knows, it will clump like crazy. And so, in order to have the convenience of not having to bend your arm at the elbow, Industrial Products Inc. must lacquer each shred of cheese with cellulose—wood flour—and various other Better Living Through Chemistry Gross Domestic Product Enhancers. Hey, here is an idea—want to prevent your cheese from clumping? Simply grate it fresh from the Mother Clump—the bloody block it was made in.

I am sputtering with anger as I try to write this, and struggling to keep the profanity to a minimum in case my lovely old grandmother wanders onto this webpage. But what the hell?

I just want some cheese. I like it on my toast, I like it on pizza, I like it in sandwiches, I like it on pasta, and I like it on crackers. I am a man that is very happy with bread and cheese—I love both bread and cheese. I really like cheese.

What I do not want is anti-fungal chemicals that are used to manage the stupidity of pre-grated cheese.

This is really about surface area. A block of cheese does not have very much surface area. If a little mould gets started, you just cut it off and eat the rest. But when you increase the surface area an order of magnitude by grating it in a giant factory, then you put it in sealed plastic bags, drop them in a box and ship them around the continent—well, you can see how mould will grow.

Of course, since you have just carefully powdered each and every shred of your stupid pre-grated cheese, the last thing you want to do it mash it down again. And so each bag has lots of air in it, and each box has to be big enough to hold all those bags of air around all that fluffed up cheese. And so now we are wasting fuel, cardboard and plastic, all so we can eat some anti-fungals and wood flour on our fucking nachos.


Man. I am sorry Grandma. I lost it there. Still, it is not like you don’t know I am from the sweary side of the family—I do keep a lid on it when we visit. Love you!


How did I come across all this? Because there were several warnings that pre-grated cheese does not make good cheese sauce—you can’t cook with it properly. Small surprise really since it is no longer cheese, it is some sort of monstrous cheesewood. Perhaps you can panel your rec room.

Hey, just for kicks, why don’t you google ‘listeria grated cheese’? That’s right—if you want to get sick there is no better way than industrial ‘food’. Factory widgets for dinner—what could go wrong?

So. This is the world we have built—a world in which it makes sense to industrially grate cheese at a greatly increased risk of sickness, coat it with poisons and wood dust, bag it and box it and ship at great fuel cost, in order to use it only in a smaller range of ‘foods’.

And that is all I have to say about that.


{ 1 comment }